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Abstract – Elevational gradients affect the production of plant secondary metabolites through 46 

changes in both biotic and abiotic conditions. Previous studies have suggested both elevational 47 

increases and decreases in host-plant chemical defences. We analysed the correlation of 48 

alkaloids and polyphenols with elevation in a community of nine Ficus species along a 49 

continuously forested elevational gradient in Papua New Guinea. We sampled 204 insect 50 

species feeding on the leaves of these hosts and correlated their community structure to the 51 

focal compounds. Additionally, we explored species richness of folivorous mammals along the 52 

gradient. When we accounted for Ficus species identity, we found a general increase in 53 

flavonoids and alkaloids. Elevational trends in non-flavonol polyphenols were less pronounced 54 

or showed non-linear correlations with elevation. The abundance of insect herbivores decreased 55 

with elevation, while the species richness of folivorous mammals showed an elevational 56 

increase. Insect community structure was affected mainly by alkaloid concentration and 57 

diversity. Although our results show an elevational increase in several groups of metabolites, 58 

the drivers behind these trends likely differ. Flavonoids probably provide figs with protection 59 

against abiotic stressors, such as UV-irradiation. In contrast, alkaloids affect insect herbivores 60 

and may provide protection against mammalian herbivores and pathogens. Concurrent analysis 61 

of multiple compound groups alongside ecological data is an important approach for 62 

understanding the selective landscape that shapes plant defences. 63 

 64 
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INTRODUCTION 71 

Elevational gradients lead to local adaptations and differential selection on traits, rapid turnover 72 

in community composition, and changing interaction networks (Segar et al. 2016; Toussaint et 73 

al. 2013). As a result, long wet elevational gradients in the tropics are often among the most 74 

diverse places on earth in terms of both species richness and functional diversity (Perrigo et al. 75 

2019). In plants, elevational gradients can drive significant changes in the production of 76 

secondary metabolites in response to changes in both biotic and abiotic conditions (Defossez et 77 

al. 2018; Moreira et al. 2018). These changes in plant chemistry have cascading effects on the 78 

associated organisms, as plant secondary chemistry underpins patterns of diversity across 79 

multiple trophic levels (Richards et al. 2015; Volf et al. 2019). 80 

Plants might be expected to invest progressively less into chemical defences with increasing 81 

elevation because insect abundance and herbivory generally decrease towards higher elevations 82 

(Garibaldi et al. 2011; Pellissier et al. 2014; Sam et al. 2019). However, the costs of 83 

compensating for biomass lost to herbivores show a strong elevational increase too. This may 84 

favour a higher investment into defences at the expense of growth by plants at higher elevations 85 

(Defossez et al. 2018; Givnish 1999; Salgado et al. 2016). Elevational trends in anti-herbivore 86 

defences can be further modified by changes in herbivore communities that normally show a 87 

strong turnover with elevation (Novotny et al. 2005). As different herbivores respond to 88 

different plant defences (Volf et al. 2015; Volf et al. 2018), such changes in insect community 89 

composition can modify the relative importance of individual defensive traits along elevational 90 

gradients. Furthermore, while studies have typically focused on elevational trends in insect 91 

herbivory, the abundance of plant pathogens and other groups of herbivores, such as folivorous 92 

mammals, also show pronounced elevational trends (Brown and Vellend 2014; Geml et al. 93 

2014; Tallowin et al. 2017). Thus, the plant chemotype observed is a result of multiple biotic 94 

drivers operating over both ecological and evolutionary scales. 95 



While herbivores are important drivers of secondary metabolite diversity, abiotic factors also 96 

play an important role. Temperature, and in most cases resources, decrease with elevation and 97 

this can impair some of the metabolic pathways responsible for producing secondary 98 

metabolites. This is largely true in the alpine zone, above the tree line, where plants are exposed 99 

to extreme abiotic conditions (Pellissier et al. 2014). On the other hand, secondary metabolites 100 

involved in protection against low temperatures and UV irradiation, such as various flavonoids, 101 

should increase in concentration with elevation (Rasmann et al. 2014). This increase in specific 102 

metabolite groups stimulated by abiotic conditions can secondarily affect insect herbivores that 103 

also respond to the changing environmental conditions themselves (Escobar-Bravo et al. 2017).  104 

Indeed, it is the interaction between biotic and abiotic factors that drives elevational trends in 105 

host plant defences (Defossez et al. 2018). Given the complexity of these interactions, 106 

elevational gradients do not generate a simple directional change in the overall intensity of 107 

chemical defences. Instead they act to modify the relative importance of individual groups of 108 

secondary metabolites and forms of plant defence (Defossez et al. 2018; Moreira et al. 2018; 109 

Rasmann et al. 2014). Quantification of herbivore or pathogen communities and environmental 110 

variables is necessary for the correct interpretation of trends in host-plant defences (Moreira et 111 

al. 2018). 112 

Here we focus on the compound specific leaf chemistry of figs (Ficus; Moraceae) along one of 113 

the world’s most diverse elevational gradients, the New Guinean Central Range. Ficus has a 114 

pantropical distribution and is an extraordinarily species rich genus of woody plants, containing 115 

over 800 species, of which ca 150 occur in Papua New Guinea (PNG) (Berg and Corner 2005; 116 

Cruaud et al. 2012). Ficus is a keystone plant genus. It supports diverse communities of 117 

herbivorous insects and several groups of frugivorous and herbivorous birds and mammals 118 

(Kanowski et al. 2003; Novotny et al. 2005; Shanahan et al. 2001). The insect herbivores 119 

associated with the genus can typically feed on multiple con-generics which is thought to have 120 



contributed to the chemical divergence among Ficus species (Volf et al. 2019; Volf et al. 2018). 121 

The majority of the mammalian herbivores feeding on Ficus in the New Guinean region are 122 

possums, cuscuses or tree mice (Flannery 1995). Ficus is over-represented amongst plant 123 

species with wide elevational ranges (Novotny et al., 2005) and in PNG, elevational gradients 124 

have probably played an important role in the speciation within the genus. Parapatric speciation 125 

has likely generated distinctive lowland/highland populations, sister species, and communities 126 

(Segar et al. 2016; Souto‐Vilarós et al. 2019). 127 

Fig leaves contain a variety of secondary metabolites, including alkaloids, polyphenols, and 128 

terpenoids (Volf et al. 2018). Phenanthroindolizidine alkaloids are among the most important 129 

alkaloid groups in Ficus. They have a rather restricted distribution among plants and are 130 

typically produced by species of Moraceae, Apocynaceae, and Caricaceae (Damu et al. 2005; 131 

Han et al. 2013; Konno et al. 2004). Phenanthroindolizidine alkaloids exhibit a pronounced 132 

cytotoxicity and inhibit the enzymes involved in the synthesis of DNA (Stærk et al. 2000). They 133 

are strong antifeedants for generalist herbivores (Miller and Feeny 1983). In contrast, some 134 

specialized and highly adapted insect herbivores feeding on Ficus, such as moths from the 135 

genus Asota, are probably able to sequester these metabolites (Sourakov and Emmel 2001). 136 

Some phenanthroindolizidine alkaloids, such as antofine, also show anti-pathogen activities, 137 

being effective inhibitors of bacteria and fungi (Mogg et al. 2008). Polyphenols are a diverse 138 

group of secondary metabolites with a broad variety of functions. Their anti-herbivore function 139 

against insects results from at least three factors: (1) oxidative activation mediated by the high 140 

pH of the insect gut, or by plant polyphenol oxidases release by cell lysis, (2) binding and 141 

precipitation of nutritive proteins at the low to neutral pH present at the oral cavity or in the gut 142 

of some insect species, and (3) activity resulting from degradation/hydrolysis products of 143 

polyphenols that may be accelerated by high pH or microbe action (Salminen 2014; Salminen 144 

and Karonen 2011). Importantly, the high pH found especially in the gut of lepidopteran larvae 145 



favours the oxidation of polyphenols and inhibits their protein precipitation functions (Salminen 146 

and Karonen 2011). In addition, flavonols are often involved in abiotic protection, such as 147 

against UV irradiation (Escobar-Bravo et al. 2017; Harborne and Williams 2000).  148 

Our aim was to document elevational trends in the concentration, diversity, and composition of 149 

Ficus alkaloids and polyphenols. We analysed trends in chemical data in the context of 150 

caterpillar and leaf-chewing beetle communities. Furthermore, we reported patterns in the 151 

elevational species richness of mammalian herbivores because these may represent an 152 

important factor driving investment in defence. We expected a general elevational increase in 153 

Ficus defences as the plants growing at high elevations need to protect their biomass against 154 

both biotic and abiotic factors more intensely. 155 

 156 

METHODS AND MATERIALS 157 

Study Sites and Field Sampling. We carried out a detailed survey at six study sites along an 158 

elevational gradient (200, 700, 1200, 1700, 2200, and 2700 m a.s.l.) on Mt. Wilhelm in Papua 159 

New Guinea from June 2013 to February 2014 (Fig. S1, Table S1). Our study transect has been 160 

subject to intensive study and is home to 51% species of New Guinea mainland birds, 27% of 161 

PNG butterflies and 15% of PNG frogs (Novotny and Toko 2015). There are 157 Ficus species 162 

known from New Guinea (Whitfeld and Weiblen 2010), including 73 species documented along 163 

the Mt Wilhelm transect. The majority of species surveyed at our study site are widespread in 164 

Papua New Guinea and frequently recorded in large scale floristic surveys (Berg and Corner 165 

2005). We focused on nine Ficus species common along the gradient: F. arfakensis King, F. 166 

copiosa Steud., F. pungens Reinw. ex Blume, F. erythrosperma Miq., F. hahliana* Diels, F. 167 

hombroniana* Corner, F. itoana Diels, Diels, F. microdictya and F. umbrae Weiblen. The last 168 

three species are part of a monophyletic complex, with F. umbrae Weiblen being a newly 169 

described species recently split from F. itoana (Ezedin and Weiblen 2019; Souto‐Vilarós et al. 170 



2018). We treated the F. itoana species complex as a single species for the purpose of statistical 171 

analyses. Species marked with an asterisk may comprise further genetically distinct entities 172 

above the population level. Highland individuals of F. hombroniana resemble the closely 173 

related F. ihuensis and populations of F. hahliana at 1700 m a.s.l. and above are genetically 174 

and morphologically distinct from lowland populations, although they form a monophyletic 175 

clade within the current sampling context (Segar et al. 2016). 176 

At each elevation, we set up ten 10 x 500 m transects and marked all focal Ficus species with a 177 

DBH (diameter at breast height) greater than 1 cm that were growing within the transect. We 178 

identified each tree and gave it a unique identifier number (Segar et al. 2016). Our selection of 179 

individual trees for sampling chemistry was guided largely by the range of sizes used to sample 180 

insects (see below), although in both cases we aimed to avoid extremely young individuals (i.e. 181 

saplings with a DBH <1.0 cm). We sampled 142 trees for chemical data and recorded DBH 182 

data for 132 of these individuals. The mean diameter at breast height (DBH) for each species 183 

was as follows (standard error in parentheses): Ficus afarkensis 5.0 cm (±0.9), Ficus copiosa 184 

7.5 cm (±2.2), Ficus erythrosperma 6.8 cm (±0.9), Ficus hahliana 5.8 cm (±0.8), Ficus 185 

hombroniana 2.5 cm (±0.4), Ficus itoana complex 7.8 (±0.9) and Ficus pungens 11.6 (±1.6). 186 

We collected forty leaf discs from up to six individuals per species per elevation using a cork 187 

borer 2.4 cm in diameter (avoiding the midrib) from fully expanded mature leaves. We avoided 188 

sampling from plants heavily damaged by herbivores or pathogens. We stored half of the leaf 189 

discs in HPLC grade acetone in order to prevent enzymatic degradation and oxidization of the 190 

studied metabolites in the field and transferred them to a dark -20ºC freezer on return to the 191 

New Guinea Binatang Research Centre. Later, we used these discs for secondary metabolite 192 

analysis. We weighed the other half of leaf discs fresh and dry in order to estimate both the 193 

percentage of water per leaf disc and the dry weight contained in each tube of acetone. 194 



We sampled all Ficus individuals for Lepidoptera leaf-chewing larvae (caterpillars) and adult 195 

leaf chewing beetles. Trained collectors walked the same ten transects per elevation as 196 

described above and systematically (leaf to leaf) searched all accessible (≤3m height) foliage 197 

for herbivores on Ficus trees. Collection was exhaustive across the accessible foliage such that 198 

the number of leaves surveyed varied from tree to tree. We repeated this sampling ten times, in 199 

approximately ten-day intervals over a 3.5 month period, for each transect and across all study 200 

sites. A total of 300 km across sites was walked across surveys and months. We tested all 201 

herbivores for feeding on the plant species from which they were collected in 24-hour no-choice 202 

experiments to confirm host associations. Where possible we reared the larvae to adults and 203 

photographed both stages. We morphotyped individuals by cross-referencing them to 204 

collections at the New Guinea Binatang Research Center. We shipped the adult Lepidoptera to 205 

the National Museum of Natural History, Smithsonian Institution for further identification. 206 

Legs of representative samples were shipped to Institute of Entomology, Biology Centre, Czech 207 

Academy of Sciences. We sampled dry legs from 486 Lepidoptera individuals to obtain COI 208 

barcode sequences (Wilson 2012). Following this we either shipped the samples directly for 209 

sequencing with standard Sanger protocols at the Biodiversity Institute of Ontario or sent them 210 

as extracted and amplified DNA for sequencing at Macrogen Korea. We uploaded the 211 

sequences to BOLD and assigned them to Barcoding Index Numbers (BINs) which we used as 212 

corroborating evidence, alongside photographs and taxonomic examination by SEM, to further 213 

improve our field-based identifications. Our approach allowed us to place the barcoded 214 

specimens within a wider sampling context (of 25,000 New Guinean Lepidoptera sequences) 215 

and to connect and refine species concepts across tens of years of sampling. We have released 216 

data for 408 sequences representing 198 barcode clusters (putative species) on GenBank 217 

(accession numbers pending) including the standard fields for the BARCODE data standard 218 

and more data, including images and host plants, are available on BOLD 219 



(www.boldsystems.org; Ratnasingham and Hebert 2007; Ratnasingham and Hebert 2013), in a 220 

dataset accessible using a DOI (dx.doi.org/10.5883/DS-WILFC). 221 

We used the leaf area sampled for herbivores to standardize insect abundance across sites and 222 

Ficus species (Table 1). Specifically, we counted the number of leaves sampled for herbivores 223 

on each tree. We then haphazardly sampled one leaf per tree and photographed it. We randomly 224 

selected at least ten individuals per Ficus species and elevation (if available), measured the leaf 225 

area from photographs and used these data to generate mean area of one leaf per Ficus species 226 

per elevation. The final estimates of the leaf area sampled for herbivores were calculated by 227 

multiplying the number of leaves sampled for a given Ficus species and elevation by the 228 

corresponding mean area per leaf. 229 

Non-volant mammals were surveyed at every elevation during the dry season of 2019 (June-230 

September). We sampled every site for ten consecutive nights using between 177 - 266 traps 231 

per night. We used the following trap types: rat-type snap traps, medium Sherman box live 232 

traps, Elliott box live traps, roofed Tomahawk cage live traps (cat size and squirrel size), and 233 

roofed pitfall live traps (provided with hay or moss in higher altitudes). We positioned trapping 234 

lines to start at least 50 m from each camp. The terrestrial traps were in 4-6 lines, at ~7 m 235 

intervals and placed in diverse habitats (primary and secondary forest, creeks and food gardens). 236 

The pitfalls were set 10 m apart along a 50 mm high barrier from a black plastic foil. 237 

Additionally, we set a mean of 39 arboreal traps per site in accessible trees between a height of 238 

seven to 15 meters at the altitudes of 700, 1700, and 2700 m asl, using a combination of snap 239 

traps, Sherman box live traps, and roofed Tomahawk cage live traps. We checked our traps at 240 

least twice per 24-hour sampling period (dusk and sunrise). We baited all traps except for the 241 

pitfalls before dawn, mostly with a mixture of peanut butter, tinned fish, and rolled oats or with 242 

sweet potatoes. Arboreal traps were occasionally baited with banana. We also conducted 243 

spotlighting and night walks with local hunters to find and capture mammals. We inspected 244 



hunted animals, including older bones and skins, provided by local hunters (a total of 142 bones 245 

and 18 skins and other remains). Finally, we conducted opportunistic interviews with local 246 

inhabitants and recorded their mammal sightings for each site. The methods, including sampling 247 

protocol, were approved by the PNG National Research Institute as a basis for the issue of a 248 

Special Exemption Research Visa no. 99902702887. All animals were handled in accordance 249 

with ethical guidelines approved by the State of Papua New Guinea. 250 

Finally, we measured average temperature and humidity at each elevation as surrogates for 251 

climatic changes along the gradient. Temperature and humidity at each site were recorded every 252 

hour by R3120 dataloggers (Comet Systems, Rožnov pod Radhoštěm) placed in the understory 253 

(1 m above ground). The temperature and humidity were monitored for 12 months in 2010 and 254 

six months in 2013. Only at 700 m and 1200 m, where the original dataloggers were stolen, the 255 

data represent six months of measurements in 2011 and six months of measurements in 2013. 256 

The values obtained were used for calculating mean temperature and humidity at each elevation. 257 

Chemical Analysis. We stored the leaf discs collected for alkaloid and polyphenol analysis (ca 258 

0.5 g of dry leaf tissue in total for each individual) in 40 ml of HLPC grade acetone. In the 259 

laboratory, we transferred this first acetone extract into a 50 ml falcon tube. We added 5 ml of 260 

ultrapure water and concentrated the solution to water phase under a flow of nitrogen at room 261 

temperature. We cut the leaf discs into smaller blades and transferred them into grinding tubes 262 

(DT-50, IKA-Werke GmbH & Co. KG, Germany) containing 35 ml acetone/water (80:20, v/v). 263 

We extracted the remaining alkaloids and polyphenols from the leaves by grinding them for 30 264 

min using tube dispensers at room temperature (Ultra-Turrax Tube Drive, IKA-Werke GmbH 265 

& Co. KG, Germany). Then we removed the leaf material and combined the extract with the 266 

water phase obtained from the first acetone extraction above. We diluted the combined extract 267 

with acetone to a uniform volume of 50 ml. We split this volume of extract, with 10 ml being 268 



taken for polyphenol analysis and the remaining 40 ml being freeze-dried and used for alkaloid 269 

analysis. 270 

For the analysis of alkaloids, we suspended the dried extract in 10 ml of 5 % aq. HCl, vortexed 271 

it and transferred it into a 15 ml Falcon tube and centrifuged it (9000 rpm, 10 min) before 272 

transferring it to a 10 ml clear vial. Subsequently, we took 8 ml of the sample and adjusted its 273 

pH to 10 with 25% NH3. We extracted the alkaline solution in a 50 ml extraction funnel with 274 

an equal volume of CHCl3. We dried the chloroform solution under nitrogen and dissolved it 275 

into ethanol, filtered it with a 0.2 µm PTFE filter and analysed it by UPLC-DAD-HESI-276 

Orbitrap-MS in the positive ion mode as described in Volf et al. (2018). The Acquity UPLC 277 

systems consisted of a binary solvent manager, a sample manager, a column oven and a diode 278 

array detector (Waters Corporation, Milford, MA, USA). We used an Acquity UPLC BEH 279 

phenyl column (30 mm × 2.1 mm i.d., 1.7 µm; Waters Corporation). The UPLC system was 280 

attached to a Q Exactive Orbitrap mass spectrometer with a heated electrospray ion source 281 

(HESI II; Thermo Fisher Scientific GmbH, Bremen, Germany). The flow rate of the eluent was 282 

0.650 mL/min and 0.1% HCOOH (A) and acetonitrile (B) were used in the gradient elution. 283 

The gradient profile was as follows: 0–0.1 min: 97% A and 3% B (isocratic); 0.1–3.0 min: 284 

97%–55% A and 3%–45% B (linear gradient); 3.0–5.0 min: 55%–10 % A and 45%–90% B 285 

(linear gradient); 5.0–7.0 min: 10% A and 90% B (isocratic); 7.0–7.1 min: 10%–97% A and 286 

90%–3% B (linear gradient); 7.1–7.2 min: 97% A and 3% B (isocratic). The injection volume 287 

was 5 µL by full loop injection. The resolution of the mass spectrometer was set to 70 000, 288 

automatic gain control (AGC) was 3×106, maximum injection time was 200 ms and the scan 289 

range was 150–1200 m/z. The HESI conditions were as follows: spray voltage +4.0 kV, 290 

capillary temperature 380°C, sheath gas (N2) flow rate 60 units, auxiliary gas (N2) flow rate 20 291 

units and S-lens RF level 60. The mass spectrometer was calibrated with Pierce LTQ Velos ESI 292 

Positive Ion Calibration Solution (Thermo Fischer Scientific, Rockford, IL, USA). We 293 



processed the data with Thermo Xcalibur Qual Browser and Thermo Xcalibur Quan Browser 294 

software packages (Thermo Fischer Scientific). To identify the alkaloids in the samples, we 295 

took a portion of each alkaloid extract and pooled them together by plant species. We then 296 

identified the alkaloids from each plant species by analysing the pooled samples with UPLC-297 

DAD-HESI-Orbitrap-MS/MS. We identified the compounds mainly by their molecular 298 

formulas, which we constructed from the high-resolution mass spectrometric data and then 299 

compared them to literature (e.g. Damu et al. 2005; Khan et al. 1993; Lee et al. 2011). 300 

Additionally, we used UV spectra and MS2 data for the compound identification (Baumgartner 301 

et al. 1990; Bruneton et al. 1983; Cui et al. 2004; Xiang et al. 2002). We assigned the individual 302 

compounds to following structural sub-groups: phenanthroindolizidines, seco-303 

phenanthroindolizidines, dehydro-seco-phenanthroindolizidines, 304 

tetrahydrobenzylisoquinolines, and ficuseptamines. Subsequently, we semi-quantified the 305 

alkaloids from the extracts with extracted ion chromatograms (EIC) as area of peak/mg (dry 306 

weight) of plant material. To control for the possible fluctuations in the performance of the MS 307 

system, we analysed a Ficus septica extract periodically and monitored the area of ficuseptine 308 

with an EIC. We normalized all initial peak areas of the EICs of the analytes taking into account 309 

the possible changes in the ficuseptine peak areas.  310 

In the case of polyphenols, we ran two separate sets of assays. First, we quantified 311 

concentrations of the main polyphenol sub-groups (in mg/g dry weight) by UPLC-QqQ-MS/MS 312 

with the methods of Engström et al. (Engström et al. 2014; 2015) as described in e.g. Malisch 313 

et al. (2016). The measured polyphenol sub-groups included (1) hydrolysable tannins that we 314 

divided into galloyl derivatives and hexahydroxydiphenoyl derivatives (HDDP, ellagitannins), 315 

(2) proanthocyanidins that we divided into procyanidin and prodelphinidin subunits, (3) 316 

flavonol glycosides that we divided into kaempferol, quercetin and myricetin derivatives, and 317 

(4) quinic acid derivatives. Second, from each species we chose all individual polyphenols we 318 



were able to characterize on the basis of their UV and MS spectra (e.g. Moilanen et al. 2013). 319 

For the quantification of the selected compounds from the negative ion full scan trace of the 320 

UPLC-QqQ-MS/MS analyses, we used the m/z value of each compound that corresponded to 321 

its deprotonated molecule. We quantified these compounds against calibration curves obtained 322 

with our own standards (chlorogenic acid, epicatechin, quercetin galactoside, kaempferol 323 

glucoside). 324 

In addition, we ran two activity assays to quantify two major functions of polyphenols in anti-325 

herbivore protection – oxidative activity and protein precipitation capacity. We measured 326 

polyphenol oxidative activity following Salminen & Karonen (2011) using gallic acid as the 327 

standard. We measured protein precipitation capacity following Hagerman’s radial diffusion 328 

assay (Hagerman and Butler 1978) using pentagalloylglucose as the standard. Both assays gave 329 

activities in mg/g dry weight. 330 

Finally, we calculated the Shannon diversity index for alkaloids and polyphenols based on the 331 

concentration (in mg/g dry weight) of main structural sub-groups listed above to account for 332 

structural diversity rather than for the number of compounds in a sample. 333 

Statistical Analysis. First, we explored overall elevational trends in the concentration and 334 

diversity of main alkaloid and polyphenol structural sub-groups, and in the two measured 335 

activities. We performed a Redundancy Analysis (RDA) with chemical data as the response 336 

variables to analyse what percentage of variability in Ficus chemical profiles is explained by 337 

the elevation. We used elevation as the explanatory variable and Ficus species identity as a 338 

covariable defining permutation blocks. All chemical and activity data were log-transformed 339 

prior to the analyses. We used Ficus species from individual elevations as samples. We 340 

identified the relative effects of elevation and species identity on alkaloid and polyphenol 341 

profiles using 9999 permutations and adjusted the explained variability following Ter Braak 342 

and Smilauer (2012). In addition, in the next step we added average temperature and humidity 343 



as surrogates for climatic variation along the gradient in the RDA and compared their effects 344 

with the effect of elevation by variance partitioning. We conducted all multivariate analyses 345 

conducted in CANOCO 5 (Ter Braak and Smilauer 2012). 346 

Second, we used compound level data to test for specific elevational trends within focal 347 

metabolite sub-groups as individual compounds can exhibit differential responses to elevation. 348 

We modelled the overall correlation between the major classes of individual compounds 349 

(alkaloids, non-flavonoid polyphenols, flavonoids (flavonols and flavones)) and elevation with 350 

a separate linear mixed model for each polyphenol group using the R package ‘nlme’ (Pinheiro 351 

et al., 2018) and a generalised linear mixed model for alkaloids as implemented in the R package 352 

‘lme4’ (Bates et al. 2015). Such an approach is informative when both correlations and 353 

opposing trends are expected between explanatory variables. In each model, we used the 354 

concentration of each individual compound present in at least 50% of all species and samples 355 

as the response variables. For analytical purposes we arranged the data so that the only unique 356 

row value was concentration, each individual tree was coded as an observation (repeating 1-357 

142) while species (seven levels), elevation and compound identity were also included to group 358 

the rows of concentration values. The fixed explanatory variables were elevation and 359 

compound. We used Ficus species as the random effect. We also included a constant variance 360 

function for the term ‘compound’ that allowed a different standard deviation for each level (e.g. 361 

each compound) along with a general correlation structure between observations from the same 362 

individual grouped within species. Finally, we ran mixed models for each individual compound, 363 

with the random effect being species. Values in the alkaloid data set were typically high or zero, 364 

due to a lack of universal compound presence, as such we converted alkaloid concentration to 365 

binary values (presence or absence) and modelled this variable as having a binomial distribution 366 

of errors (e.g. we used a generalised linear mixed model with a logit link). 367 



Third, we analysed the elevational trends in insect abundance and the number of herbivores 368 

shared between the studied Ficus species. To assess the elevational trends in leaf-chewer 369 

abundance, we analysed the correlation between the elevation and log-transformed insect 370 

abundance standardized by leaf area using linear mixed effect models. We used Ficus species 371 

identity as a random factor. To assess the elevational trends in leaf-chewer specialization, we 372 

calculated the dissimilarity of leaf-chewer communities between pairs of studied Ficus species 373 

at individual elevations using Bray-Curtis abundance-based index and correlated it to elevation. 374 

We used quasibinomial generalised linear models with the response variable Bray-Curtis 375 

dissimilarity and the explanatory variable elevation, with and without a second order 376 

polynomial fit. We chose a quasibinomial error structure because the response variable was 377 

bounded by 0 and 1 and the model showed overdispersion. We compared the two models using 378 

ANOVA with an F test and selected the more complex model if it explained significantly more 379 

of the deviance.  380 

To analyse the effects of the studied compounds on the leaf-chewer community structure, we 381 

analysed the effects of alkaloids and polyphenols on leaf-chewer communities by hierarchical 382 

Canonical Correspondence Analysis (CCA). Firstly, we ran an analysis of the effects of total 383 

concentrations of alkaloids and polyphenols, their diversities, concentrations of their sub-384 

groups, and the two types of activities. Secondly, we ran an analysis of the effects of individual 385 

compounds. We standardized insect data by leaf area, log-transformed them, and down-386 

weighted rare insect species (Ter Braak and Smilauer 2012). We used Ficus species trait means 387 

at individual elevations as explanatory variables. We used Ficus species identity and elevation 388 

as covariables and defined the permutation blocks by species identity. We identified the 389 

chemical traits with significant effects using 9999 permutations and forward selection. We 390 

conducted all multivariate analyses in CANOCO 5 (Ter Braak and Smilauer 2012).  391 



We removed singleton herbivore species from all analyses. We also excluded F. pungens, which 392 

had only a small leaf area sampled for herbivores, and the F. itoana complex from 2700m, for 393 

which only one singleton herbivore was sampled, from all analyses using the insect data.  394 

RESULTS 395 

In total, we analysed 142 trees for polyphenols and alkaloids (Table S2 and S3). We 396 

characterized a total of 29 alkaloids belonging to five alkaloid sub-groups and 49 polyphenols 397 

belonging to five polyphenol sub-groups. See Appendix 2 for details on their distribution among 398 

the studied Ficus species. 399 

Both polyphenol and alkaloid total and sub-group concentrations, their diversities, and activities 400 

changed along the elevational gradient (Fig. 1). Diversities of both alkaloids and polyphenols 401 

showed an increasing trend along the gradient (Fig. S2). There was an increase in alkaloid 402 

concentration towards 2200 m while they decreased at 2700 m when not accounting for Ficus 403 

species identity. This was caused by differential responses of individual alkaloid sub-groups to 404 

elevation – phenanthroindolizidines, seco-phenanthroindolizidines showed an almost linear 405 

increase towards higher elevations while dehydro-seco-phenanthroindolizidines and 406 

tetrahydrobenzylisokinolines decreased towards higher elevations but more slowly, with a 407 

plateau at mid elevations (ca 1700-2200 m a.s.l.). Ficuseptamines were not present at low 408 

elevations and were found only in the F. hahliana population at 2700 m a.s.l.  409 

Importantly, when analysed by the RDA accounting for species identity, most alkaloid 410 

structural sub-groups, alkaloid concentration, and their diversity showed significant positive 411 

correlation with elevation (Table S4). Elevation explained 7.4% of the adjusted variability in 412 

alkaloids (pseudo-F=11.8, p<0.001, Fig. 1). When combined with average temperature and 413 

humidity, all three variables together explained 8.1% of the adjusted variability in alkaloids 414 

(pseudo-F=5.0, p=0.001). Most of the variation was explained by the covariation between the 415 

effects of elevation, average temperature and humidity (5.4% of the explained variability), 416 



followed by a significant effect of elevation (1.9% of the explained variability), while the 417 

unique effect of average temperature and humidity was not significant (0.8% of the explained 418 

variability). The positive correlation in the concentration of several alkaloid groups with 419 

elevation was also supported by generalised linear mixed effect models analysing the 420 

elevational trends in individual compounds (t1826=9.76 p<0.001). Ten out of 13 compounds 421 

showed a significant positive trend with elevation (Table S5). 422 

The concentration of total phenolics showed a hump-shaped distribution with the maximum at 423 

mid elevations. The trend in total phenolics was driven by procyanidins, which were present in 424 

the highest concentration. The overall trend in procyanidins was mirrored by the protein 425 

precipitation capacity. When analysed by RDA analysis accounting for species identity, 426 

polyphenols generally responded to elevation but showed various elevational trends (4.3% of 427 

adjusted variability explained, pseudo-F=8.0, p<0.001). Polyphenol diversity, quercetins, and 428 

quinic acid derivatives showed the strongest positive correlation with elevation whereas 429 

prodelphinidins showed the strongest negative correlation with elevation. The response of other 430 

polyphenols was much weaker. Galloyl and HHDP derivatives (hydrolysable tannins) were 431 

present in very low levels (<0.2 mg/g) in only a few of the samples and did not show any reliable 432 

patterns (Table S4). When combined with the average temperature and humidity, all three 433 

variables together explained 8.4% of the adjusted variability in polyphenols (pseudo-F=5.1, 434 

p=0.001). Most of the variation was explained by the unique effects of average temperature and 435 

humidity (4.3%), followed by the unique effect of elevation (3.2%), and their covariation 436 

(0.9%). The results from linear mixed effect models analysing the elevational trends in 437 

individual polyphenol compounds broadly supported the multivariate results outlined above. 438 

While flavonoids showed generally a positive correlation with elevation (t=6.086,1262, 439 

p<0.001), non-flavonoid polyphenols did not show a significant trend (t=-1.141,980, p=0.254; 440 

Table S5). Specifically, the concentrations of three out of four flavonoid compounds correlated 441 



to elevation showed a positive elevational trend while only epicatechin was negatively 442 

correlated (t=-3.865,134, p<0.001). On the contrary, the five non-flavonoid compounds 443 

significantly correlated with elevation showing contrasting elevational trends. For example, 444 

concentration of PCPC dimer 1 was negatively correlated (t=-2.364,134, p<0.001) while 445 

chlorogenic acid was positively correlated (t=4.272,134, p<0.001). 446 

We sampled 56 Lepidoptera species (387 individuals) and 148 Coleoptera species (839 447 

individuals) during the survey of insect herbivore communities associated with our Ficus 448 

species (Table S6, Appendix 1). Insect abundance decreased with elevation (χ2(4)=9.5, 449 

p=0.002). The dissimilarity in leaf-chewer communities between coexisting pairs of Ficus 450 

species measured by the Bray-Curtis index showed a hump-shaped distribution with the 451 

minimum dissimilarity at mid elevations (Fig. 2). The model including a second order 452 

polynomial relationship between Bray-Curtis dissimilarity and elevation explained 453 

significantly more deviance than the model with a first order relationship (ΔDF=1, 454 

ΔDeviance=0.487, F=4.736, p=0.034). There was a significant curvilinear relationship between 455 

elevation and Bray-Curtis dissimilarity (F50,2=6.671, p=0.044). 456 

CCA with forward selection identified ficuseptamines (pseudo-F=2.0, p=0.009) and alkaloid 457 

diversity (pseudo-F=1.5, p=0.023) as the chemical traits with significant effects on 458 

communities, together explaining 7.9% of the adjusted variability in leaf-chewer composition 459 

(p=0.002 for the whole model including both traits). In the analysis of the effect of individual 460 

compounds, ficuseptamine (A or B) or pentamethoxy-phenanthroindolizidine (the presence of 461 

these compounds was collinear and their effects were identical; pseudo-F=2.1, p=0.002), 462 

dihydroxy-dimethoxy-dehydro-seco-phenanthroindolizidine (pseudo-F=1.7, p=0.010), 463 

kaempferol glucoside/galactoside (pseudo-F=1.7, p=0.046), hydroxy-trimethoxy-464 

phenanthroindolizidine (pseudo-F=1.5, p=0.042), 5-caffeoylquinic acid (chlorogenic acid, 465 

pseudo-F=1.3, p=0.033), and epicatechin (pseudo-F=1.5, p=0.030) were selected as the 466 



variables that best explained herbivore community structure, together explaining 20.4 % of the 467 

adjusted variability in leaf-chewer composition (p<0.001 for the whole model including all four 468 

traits) (Fig. 3). 469 

We recorded 21 species of folivorous mammalian herbivores along the gradient (Table S7). 470 

Their species richness increased towards higher elevations, with the maximum number of 471 

species (15) recorded at 2700 m a.s.l. (Fig. 2). 472 

DISCUSSION 473 

We quantified alkaloid and polyphenol based defences in a community of fig species along a 474 

forested elevational gradient in Papua New Guinea. At the community level, we found a hump-475 

shaped trend in the concentration of both alkaloids and phenolics. However, when we accounted 476 

for Ficus species identity, we found an elevational increase in almost all studied groups of 477 

alkaloids that likely serve as potent and phylogenetically restricted anti-herbivore and anti-478 

pathogen defences. The elevational trends in polyphenols were more diverse. We suggest that 479 

the elevational trends in individual metabolites and their groups depend on their ecological 480 

function. 481 

Elevational increase in plant defences is generally stimulated by unfavourable conditions at 482 

higher elevations that cause higher levels of environmental stress and render compensation for 483 

lost biomass more costly (Givnish 1999; Salgado et al. 2016). The unfavourable conditions in 484 

tropical montane forests involve negative effects of lower temperature and higher rainfall that 485 

reduce rates of N mineralization and increase nutrient leaching (Givnish 1999). Here the 486 

changes in temperature and humidity explained a larger share of polyphenol composition than 487 

elevation itself. This suggests that these two variables may play important roles in the 488 

elevational trends at least in some groups of polyphenols we studied. Highland plants are also 489 

exposed to higher UV-irradiation. We observed a general correlation between individual 490 

flavonoids and elevation while the direct response to elevation was weaker or non-linear in the 491 



case of non-flavonoid polyphenols. We did not test the activity of these particular metabolites. 492 

But flavonols, such as rutin, or kaempferol derivatives are known for their strong role in anti-493 

UV protection (Harborne and Williams 2000). As they did not show a particularly strong 494 

correlation to insect communities, we suggest that their elevational increase in Ficus could be 495 

most likely attributed the role they play in protecting plants against detrimental environmental 496 

effects.  497 

We found an elevational increase in almost all sub-groups of phenanthroidolizidine alkaloids. 498 

This group of alkaloids represents a specialized defence in Ficus species, having a relatively 499 

limited distribution among plants and strong effects on insect herbivores (Damu et al. 2005; 500 

Han et al. 2013; Konno et al. 2004; Volf et al. 2018). The herbivore communities studied here 501 

were most affected by ficuseptamines or pentamethoxy-phenanthroindolizidine, which were 502 

unique to F. hahliana at the highest elevation. Alkaloid diversity also played a significant role. 503 

This highlights the importance of rare or unique compounds for structuring insect herbivore 504 

communities. Such defences may be especially important in the genus Ficus which harbours 505 

many herbivores able to use multiple Ficus species as their hosts (Novotny et al. 2010; Volf et 506 

al. 2018). Indeed, insect herbivore communities associated with lowland Ficus populations are 507 

significantly structured by phenanthroidolizidine alkaloid diversity. These alkaloids limit the 508 

sharing of certain herbivores between closely related Ficus hosts (Volf et al. 2018) and may 509 

explain the turnover of specialist caterpillars across populations of the same hosts at different 510 

elevations (Novotny et al. 2005). Unlike in the case of polyphenols, their composition was not 511 

explained by the unique effects of climatic variables we measured. This is suggestive of their 512 

defensive role against insect herbivores in this system, although laboratory experiments with 513 

leaf extracts would be needed to confirm this. 514 

The increased alkaloid concentration in high elevation figs may also serve to protect against 515 

mammals and pathogens. We observed an elevational increase in species richness of folivorous 516 



mammals. Although we cannot present abundance based data, our findings are in line with the 517 

observations of previous studies that report an elevational increase in abundance and diversity 518 

of folivorous mammals, such as various possums or cuscuses, in the Austral-Papuan region 519 

(Flannery 1995; Tallowin et al. 2017). Several possum species have been shown to be important 520 

consumers of Ficus leaves (Kanowski et al. 2003). Their dietary preferences are known to be 521 

affected by leaf secondary metabolites (Moore et al. 2005). It is thus possible that higher 522 

concentration of alkaloids serves as an anti-mammalian defence in highland Ficus. 523 

Furthermore, several phenanthroindolizidines, such as antofine, show strong anti-fungal 524 

activities (Mogg et al. 2008). Fungal pathogens of plants generally decrease in abundance with 525 

elevation (Geml et al. 2014). However, the relative costs of compensating for damage by fungal 526 

pathogens increases with the elevation too (Brown and Vellend 2014), as with the relative costs 527 

of herbivory, possibly making anti-pathogen defences more important. There are very likely 528 

several biotic factors driving the elevational increase in Ficus alkaloids (and indeed other 529 

compound groups). More data on mammalian herbivores, Ficus leaf pathogens, and the activity 530 

of leaf extracts would be needed to identify their relative contribution to the observed trends. 531 

Although we observed an elevational increase in alkaloids and flavonoids this trend was not 532 

universal across all the metabolite groups studied. For example, populations of several Ficus 533 

species from mid elevations were high in procyanidins and showed high protein precipitation 534 

capacity. The ability of procyanidins to precipitate proteins is low in alkaline conditions as 535 

found in the digestive tract of many caterpillars (Barbehenn et al. 2008; Roslin and Salminen 536 

2008; Salminen and Karonen 2011). We did not find any correlation of procyanidins or protein 537 

precipitation capacity to the insect community structure, in agreement with studies of lowland 538 

fig species (Volf et al. 2018). The mid-elevational populations of Ficus also shared the highest 539 

number of insect herbivores, suggesting that high procyanidin concentration did not strongly 540 

restrict host preferences of the studied insects. On the other hand, procyanidins have been 541 



shown to affect feeding preferences and reduce apparent N digestibility in mammalian 542 

herbivores, which have low to neutral pH in their digestive system (Foley et al. 1999). The 543 

increase in procyanidins towards mid elevations might be an adaptive response to increased 544 

pressure from mammalian herbivores (Flannery 1995; Tallowin et al. 2017). However, unlike 545 

mammalian species richness and abundance, procyanidins concentration and diversity 546 

decreased between middle and high elevations. Procyanidins may thus serve another function 547 

in this system, be driven by a combination of several factors, or simply show levels of 548 

interspecific variation that are too high for detecting as a simple elevational trend. Relatively 549 

low concentrations and high interspecific variation may also explain the limited responses to 550 

elevation of other polyphenol groups despite their known biological effects on leaf-chewing 551 

insects (Segar et al. 2017; Volf et al. 2018). 552 

In agreement with Defossez et al. (2018) and Moreira et al. (2018), we suggest that instead of 553 

universal directional trends, plant traits can show contrasting elevational trends depending on 554 

their function. Using analyses based on multiple traits and linking them to datasets on 555 

herbivores or pathogens is thus necessary to understand elevational trends and interactions in 556 

plant defences (Defossez et al. 2018; Escobar-Bravo et al. 2017). Additionally, overall 557 

elevational trends in plant defences may be largely dependent on the gradient studied and, in 558 

particular, its span (Moreira et al. 2018). Unfavourable conditions can stimulate investment into 559 

defensive traits (Givnish 1999; Salgado et al. 2016) but truly adverse conditions can limit 560 

investment into secondary metabolites. This effect has been reported from plants exposed to 561 

extreme conditions above the tree line (e.g. Pellissier et al. 2014). In turn, the levels of defensive 562 

traits may be highest at elevations where conditions are adverse enough to increase the relative 563 

costs of compensating for biomass loss, but not adverse enough to hamper secondary metabolite 564 

production: resulting in the increase along the forested gradient studied here.  565 



Interspecific variability between Ficus species can also play an important role in elevational 566 

trends. We found some elevational increase in alkaloids and certain polyphenols in most of the 567 

species. Exceptions to this rule included F. copiosa, which was relatively undefended at all 568 

sites. Several previous studies have suggested that closely related species of host-plants often 569 

diverge in their defences to avoid sharing insect herbivores (e.g. Becerra 2007; Kursar et al. 570 

2009; Volf et al. 2019; Volf et al. 2018). Based on some of our results, it seems that closely 571 

related host-plant species may differ in their investment in defences along elevational gradients. 572 

As pointed out by Moreira et al. (2018), it would be interesting to analyse whether this can be 573 

driven by the costs imposed by herbivores and resulting divergent selection. Indeed, 574 

continuously forested gradients provide fascinating systems for studying the biotic and abiotic 575 

selective pressures imposed on plants. While generalities are emerging, we suggest that 576 

comparative multi-species studies sensitive to variation in herbivore and pathogen diversity are 577 

needed. 578 
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Tables 741 



Table 1 Number of individuals of Ficus species sampled for chemical traits and the leaf area 742 

of conspecific individuals searched for herbivores (in brackets; m2) across elevations. Species 743 

and elevations with low leaf area sampled for herbivores are marked with NAs and were 744 

excluded from the analyses using herbivore data. Species codes used in Fig. 3 are given in the 745 

brackets following the scientific names. 746 

Species 200m  700m 1200m 1700m 2200m 2700m Total 

F. arfakensis (ARF) 5 (138.08) 5 (64.42) 5 (39.20) 3 (395.41)   17 (637.11) 

F. copiosa (COP) 6 (47.41) 5 (165.96) 4 (18.13) 5 (116.67)   20 (348.17) 

F. erythrosperma (ERY)  5 (46.63) 4 (114.73) 5 (120.34)   14 (281.7) 

F. hahliana (HAH) 5 (148.30) 5 (246.15) 5 (274.08) 5 (96.82) 3 (661.90) 2 (1664.84) 25 (2497.05) 

F. hombroniana (HOM) 3 (22.88) 5 (23.63) 5 (4.38) 5 (421.77) 5 (667.71)  23 (1140.37) 

F. itoana complex (IXM) 5 (11.94) 4 (147.48)  5 (241.67) 5 (14.96) 5 (NA) 24 (416.05) 

F. pungens (PUN) 5 (NA) 5 (NA) 4 (NA) 5 (NA)   19 (NA) 

Total 29 (368.61) 34 (694.27) 27 (450.52) 33 (1392.27) 13 (1344.57) 7 (1664.84) 142 (5320.45) 
 747 
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Figure captions 766 



Fig. 1 Elevational trends in individual alkaloid (A) and polyphenol (B). structural sub-groups 767 

and effects of elevation on alkaloid (C) and polyphenol (D) composition in the studied Ficus. 768 

The bars show means ± sd. The concentrations are given per g of dry leaf material. The overall 769 

effects of elevation on Ficus alkaloids, polyphenols, and their main structural groups were 770 

summarized by RDA. Elevation explained 7.4% of the adjusted variability in alkaloids (pseudo-771 

F=11.8, p<0.001,) and 4.3% of the adjusted variability in polyphenols (pseudo-F=8.0, p<0.001). 772 

The RDA diagrams show the first two canonical axes. The red arrow standing for elevation 773 

points in the direction of its increase. The thin arrows point in the direction of the increase of 774 

the studied chemical traits, while the angle between arrows indicates the sign of the correlation 775 

between them. The approximated correlation is positive when the angle is sharp and negative 776 

when the angle is larger than 90 degrees. 777 

Fig. 2 Elevational trends in insect abundance (A), pairwise insect community dissimilarity 778 

between the studied Ficus species (B), and species richness of folivorous mammals along the 779 

studied gradient (C). The insect abundance decreased with elevation (χ2(4)=9.5, p=0.0020). The 780 

dissimilarity in leaf-chewer communities between coexisting pairs of Ficus species measured 781 

by the Bray-Curtiss index showed a hump-shaped distribution with the minimum at mid 782 

elevations (F50,2=6.671, p=0.044). F. pungens, which had only a small leaf area sampled for 783 

herbivores, and F. itoana complex from 2700m, from which only one singleton herbivore was 784 

sampled, were removed from the analyses. This left F. hahliana as the only Ficus species with 785 

insect data at 2700m a.s.l. and made bipartite comparisons of community dissimilarity 786 

impossible at this elevation. The comparisons of dissimilarity in insect communities thus span 787 

only up to 2200 m a.s.l. Mammal species were counted based on records from an active search, 788 

identified bone remains, and by questionnaire survey among the local villagers. 789 

Fig. 3 Effects of Ficus chemical traits on the associated herbivore communities analysed with 790 

CCA. CCA with forward selection identified ficuseptamines (pseudo-F=1.92.0, p=0.009) and 791 



alkaloid diversity (pseudo-F=1.65, p=0.023) as the chemical traits with significant effects on 792 

communities, together explaining 7.9% of the adjusted variability in leaf-chewer composition 793 

(p=0.002 for the whole model including both traits) (A). In the analysis of the effect of 794 

individual compounds, ficuseptamine A or B (pseudo-F=2.1, p=0.002), dihydroxy-dimethoxy-795 

dehydro-seco-phenanthroindolizidine (DDDSP, pseudo-F=1.7, p=0.010), kaempferol 796 

glucoside/galactosidequercetin glycoside (Kaempferol GL/GA, pseudo-F=1.7, p=0.046), 797 

hydroxy-trimethoxy-phenanthroindolizidine (HTP, pseudo-F=1.5, p=0.042), and 5-798 

caffeoylquinic acid (chlorogenic acid, pseudo-F=1.3, p=0.033), and epicatechin (pseudo-F=1.5, 799 

p=0.030) were selected as the variables that best explained herbivore community structure, 800 

together explaining 20.4% of the adjusted variability in leaf-chewer composition (p<0.001 for 801 

the whole model including all four traits) (B). F. pungens (all elevations) and F. itoana complex 802 

(2700m) had low leaf area sampled for herbivores and were excluded from the analysis. The 803 

presence of ficuseptamine (A or B) and pentamethoxy-phenanthroindolizidine were collinear 804 

and their effects were identical. Pentamethoxy-phenanthroindolizidine is not shown in the 805 

figure. Elevations are colour coded. See Table 1 for the species codes. The CCA diagrams show 806 

the first two canonical axes and the thick black arrows standing for chemical traits with 807 

significant effects on herbivore community structure point in the direction of their increase. The 808 

circles represent samples (Ficus species and their insect communities from individual 809 

elevations in this case). The distance between the samples approximates their dissimilarity as 810 

measured by their chi-square distance. Perpendicular projections of the samples onto the line 811 

overlaying the arrow of particular environmental variable can be used to approximate the 812 

variable values in individual samples. 813 
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