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36 Abstract 

 

37 
 

38 Modelling changes in river water quality, and by extension developing river management strategies, has 
 

39 historically been reliant on empirical data collected at relatively low temporal resolutions. With access to data 
 

40 collected at higher temporal resolutions, this study investigated how these new dataset types could be employed 
 

41 to assess the precision and accuracy of two phosphorus (P) load apportionment models (LAMs) developed on 
 

42 lower resolution empirical data. 
 

43 Predictions were made of point and diffuse sources of P across ten different sampling scenarios. Sampling 
 

44 resolution ranged from hourly to monthly through the use of 2000 newly created datasets from high frequency P 
 

45 and discharge data collected from a eutrophic river draining a 9.48 km2 catchment. Outputs from the two LAMs 
 

46 were found to differ significantly in the P load apportionment (51.4% versus 4.6% from point sources) with 
 

47 reducing precision and increasing bias as sampling frequency decreased. Residual analysis identified a large 
 

48 deviation from observed data at high flows. This deviation affected the apportionment of P from diffuse sources 
 

49 in particular. 
 

50 The  study  demonstrated  the  potential  problems  in  developing  empirical  models  such  as  LAMs  based on 
 

51 temporally  relatively  poorly-resolved  data  (the  level  of  resolution  that  is  available  for  the  majority  of 
 

52 catchments). When these models are applied ad hoc and outside an expert modelling framework using extant 
 

53 datasets of lower resolution, interpretations of their outputs could potentially reduce the effectiveness of 
 

54 management decisions aimed at improving water quality. 

 

55 
 

56 Keywords 
 

57 Agriculture; modelling; phosphorus; water quality; pollution; high frequency data 
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58 Introduction 

 
59 

 

60 Cultural eutrophication, due to high concentrations of phosphorus (P) and nitrogen (N), currently presents a 
 

61 major and widespread challenge for water managers (Williams and Kimball 2013; Fonseca et al. 2014; Binzer et 
 

62 al. 2016). River water quality, globally, is greatly influenced by anthropogenic pollution from point and diffuse 
 

63 sources (Sharpley et al. 2013), with the former having severe impacts during periods of low dilution in rivers 
 

64 (e.g. during spring and summer in temperate climates; Withers et al. 2012; Withers et al. 2014; Begum et al. 
 

65 2016) when diffuse sources are relatively inactive. Diffuse sources of nutrients in a catchment may be  activated 
 

66 during,  for  example,  subsequent periods of heavy rain and  resultant increased  surface  and  sub-surface flows 
 

67 (Sharpley and Wang 2014; Begum et al. 2016). 
 

68 Despite the implementation of point and diffuse source reduction strategies in many countries, water quality in 
 

69 some catchments has remained poor, with only 33% of those reviewed by Verdonschot et al. (2013) showing 
 

70 evidence of improved water quality. Agricultural intensification (Jansons et al. 2002; Moreno-Ostos et al. 2007) 
 

71 and/or significant sewage or industrial effluent   (Jarvie et al. 2006) are factors largely identified as slowing 
 

72 recovery in rivers. This is noted, for example, in European Union (EU) countries that have implemented Water 
 

73 Framework Directive (WFD; OJEC 2000) policies, particularly where river managers are attempting to improve 
 

74 water quality that in the first cycle failed the WFD objectives to improve or protect good status (e.g. de Vries 
 

75 and de Boer 2010). Remediation strategies  may be improved  by determining the contribution of  each  nutrient 
 

76 source, as this allows a better targeting of mitigation measures (Verdonschot et al. 2013). Often, this source 
 

77 determination is provided by models and especially when there is a paucity of empirical data (Bowes et al. 2008; 
 

78 Yang and Wang 2010). However, technological advances and  reductions in the cost of equipment have resulted 
 

79 in the availability of high temporal resolution datasets (Melland et al. 2012; Bieroza and Heathwaite 2015; 
 

80 Campbell et al.  2015; Perks et al.  2015;  Rode  et al. 2016).  Such  high temporal resolution datasets  have been 
 

81 used to test the precision and accuracy of models developed using data collected at much  lower frequencies, for 
 

82 example at daily or monthly intervals (see Cassidy and Jordan 2011 and Skeffington et al. 2015). 
 

83 For P, empirical load apportionment models (LAMs; Bowes et al. 2008; Greene et al. 2011) have been used to 
 

84 allocate relative contributions from different P sources using stream chemistry and flow data only (Bowes et al. 
 

85 2008; Bowes et al. 2009; Bowes et al. 2010; Chen et al. 2015). When used with extant data, these models 
 

86 provide a cost effective, labour efficient means of estimating the P load in rivers apportioned to either diffuse or 
 

87 point sources (Schoumans et al. 2009) making them attractive tools for catchment management and pollution 
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88 risk assessment. However, some limitations have been identified with LAMs. These limitations comprise i) the 
 

89 requirement of P concentrations at high flows to adequately describe the diffuse signal during storm events; ii) 
 

90 the necessity of a short sampling time step; and iii) the assumption that once the model has been fitted to flows 
 

91 at a low sampling frequency, the LAM will adequately describe all flows available at a higher frequency 
 

92 resolution (Bowes et al. 2008). 
 

93 High temporal resolution data could thus be used to quantify the potential impact of these limitations on 
 

94 catchment risk assessment. In addition, they could provide the basis for analysis of the variability in model 
 

95 outputs  in  an  individual  catchment,  which  is  an  important  step  in  the  modelling  process  (Robson  2014; 
 

96 Chaudhary and Hantush 2017), using a range of data collection scenarios similarly to previous studies (Cassidy 
 

97 and Jordan 2011; Skeffington et al. 2015). 
 

98 In the current study, the effects of sampling frequency and timing on the outputs of two different LAMs, used as 
 

99 “off the shelf” risk assessment tools, were investigated. The two LAMs are described in Bowes et al. (2008) and 
 

100 Greene et al. (2011) and are hereafter referred to as, respectively, BM and GM. The precision and accuracy of 
 

101 the two  LAMs  are assessed  within  their  applicability as tools in  catchment  management.  Determinations of 
 

102 accuracy  and  precision  were  based  on  a  comparison  of  model  outputs  between  models,  across  sampling 
 

103 scenarios and with data collected at a high temporal resolution from an agricultural catchment in the Republic 
 

104  

 
105  

of Ireland that had experienced nutrient pollution problems in the recent past (Melland et al. 2012). 

 

106 Study area 

 
107  

 

108 The  study catchment  (Figure  1,  9.48  km2,  53° 49’ 15”N,  6° 24’ 16”  W)  is identified  as  Arable  B in detail 
 

109 elsewhere (Jordan et al. 2012; Mellander et al. 2012; Mellander et al. 2014) and drains into the Dee and Glyde 
 

110 rivers and  eventually to  the  Irish  Sea  off  the  eastern coast  of  Ireland.  Ranging between 225 and 28 
 

111 mASL, land use in the catchment comprises roughly equal proportions of arable land and grassland with a 
 

112 livestock density of 1.36  LU  ha-1.  Moderately drained  gleyic  brown earth and  groundwater gley soils overlay 
 

113 calcareous greywacke and mudstone bedrock, which is often highly fractured and may provide fast pathways for 
 

114 groundwater flow. Surface and near-surface flow, associated with acute, storm dependent P transfer from diffuse 
 

115 sources (e.g. Jordan et al. 2007), is considered a predominant contributor to river flow, while chronic P pollution 
 

116 from rural point sources is relatively important at base flow (Melland et al. 2012; Murphy et al. 2015). The rural 
 

117 population density for the catchment is 14 houses km-2 (Melland et al. 2012), with wastewater treated in septic 
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118 tank systems, generating a potential human P load of 372 kg year-1, or 39.2 kg year-1  km-2, based on data provided in 
 

119 Jordan et al. (2012). The proportion of this P lost from septic tank systems and entering the stream network is, 
 

120 however, likely to vary due to the range of working and defective effluent treatment stages and temporary 
 

121 breakdowns that occur from time to time (e.g. Withers et al. 2014). Nevertheless, based on Carvalho et al. 
 

122 (2005), the minimum P load exported from fully working systems under these input conditions is estimated as 
 

123 63 kg year-1. There are no other urban or industrial point sources but farmyards, where waste management may be 
 

124 poor, pose an additional unquantified risk (Murphy et al. 2015). 

 

125  

 

126 Materials and Methods 

 
127  

 

128 High Temporal Resolution Data Collection 

 
129  

 

130 Total  reactive  phosphorus  (TRP  –  unfiltered  and  undigested)  concentrations  are  used  in  water  quality 
 

131 assessments in Ireland (SI 272 2012) and so were used in this analysis. Concentrations of TRP were measured 
 

132 sub-hourly by a bankside P analyser (Phosphax-Sigmatax, HACH, Germany; operational range 0.010 – 5.000 
 

133 mg L-1) following Eisenreich et al. (1975). This equipment has been used extensively in catchment research 
 

134 projects throughout Ireland and the UK (e.g. Wade et al. 2012; Mellander et al. 2014; Outram et al. 2014; 
 

135 Campbell et al. 2015). Concentrations of TRP in each sample were determined on a molybdate-antimony blue 
 

136 complex (DIN EN 38405 D11 – updated to DIN EN ISO 6878) that was auto calibrated against a standard 
 

137 concentration (2 mg L-1). A pressure transducer (Orpheus-mini, OTT, Germany and ADC and C31, OTT, 
 

138 Germany) monitored river stage height equated to flow (Q, m3  s-1) using sub-hourly rated records of water level 
 

139 at a Corbett non-standard flat-v weir. Data were transferred to a WISKI 7 database management system for 
 

140 quality control, processing and archiving. 

 

141  
 

142 Data management and collection scenarios 

 
143  

 

144 Total reactive P and Q data collected over a three year period (1st  April 2010 – 31st  March 2013) were examined 
 

145 for  outliers and  any apparent  anomalies  were  discarded  following  consultation  with data  managers. Hourly 
 

146 averages were calculated from sub-hourly data (on average three TRP datapoints per hour and six Q datapoints 
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147 per hour) for ease of forward processing and to remove any bias caused by equipment and sampling anomalies. 
 

148 The data were then resampled to reflect different sampling scenarios of frequency and timing using functions 
 

149 programmed in R (R Core Team 2014). 
 

150 New descriptors were derived from the date and times of observations, to include day of the week, week of the 
 

151 year, weekend (Saturday or Sunday) and working hours (8.00-18.00, Monday to Friday). Once the data were 
 

152 primed for resampling, subsets were sampled from the original dataset for each sampling scenario into new 
 

153 combinations (C; Table 1). Sampling scenarios were designed to reflect realistic sampling frequencies of daily, 
 

154 three times per week, weekly and monthly. Daily datasets (C1a-C1d) were also repeated to observe the effect of 
 

155 restricting sampling to during working hours, the hourly change  in P apportionment and the difference between 
 

156 night and day. Of the 2000 monthly datasets, only 999 were fitted with the BM, due to non-convergence after 5 
 

157 days of analysis for 1001 datasets.   However, this still provided a statistically sufficient number of  datasets  for 
 

158 model performance analysis. 

 

159  
 

160 The Load Apportionment Models 

 
161  

 

162 The two LAMs used in the current study  (BM and GM) are able to estimate the relative contributions of P from 
 

163 point and diffuse sources based on measurements of P concentration at particular river flow rates (Q). The BM 
 

164 (Eqn. 1) used two functions; the first constrained (B < 1) to represent a reduction in P concentration as Q 
 

165 increases (point sources) and the second constrained (D > 1) to show an increase in P concentration as Q 
 

166 increases (diffuse sources): 

167 

168 P = 𝐴. 𝑄𝐵−1  + 𝐶. 𝑄𝐷−1 (Eqn. 1) 
 

169 Where A, B, C, and D are time in-variant model coefficients; Q is flow; and P is the P concentration. B 
 

170 

 

171 

constrained to < 1, D constrained to >1. 

 

172 The GM (Eqn. 2) comprised three functions, with no constraints, in a polynomial nonlinear regression. First, a 
 

173 complete inverse proportional relationship between P concentration and Q (point sources); second, a linear 
 

174 relationship between P concentration and Q (diffuse sources); and third, a quadratic relationship between P 
 

175 concentration and Q, to account for hysteresis caused by source depletion in the dataset, i.e. when diffuse 
 

176 sources have become exhausted in the catchment but the flow continues to increase. 
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177 P = 𝑎𝑄−1  +  𝑏𝑄 + 𝑐𝑄2 (Eqn. 2) 
 

178 

 

179 

Where a, b and c are time-invariant model coefficients; Q is flow and P is the phosphorus concentration 

 

180 Coefficients from each model were then manipulated to provide four model outputs using hydrological data: i) 
 

181 flows at which point sources no longer dominate load (Qe), ii) percentage of flows dominated by point sources, 
 

182 iii) TRP cumulative load over three years and, iv) point load apportionment. Details on the method of 
 

183 calculation of each of these outputs are available in the online resource. However, the main differences between 
 

184 the algorithms are that BM allows variation in the inverse proportionality between Q and P, which is to account 
 

185 for P lost to sediments (Bowes et al. 2008), while GM focuses more on source depletion and the linear 
 

186 relationship between Q and P from diffuse sources. 

 

187  
 

188 The modelling process 

 
189  

 

190 All datasets were analysed using the R programming package “phoslam” (developed by the authors of this 
 

191 study), which provided the best fit for each model by the least squares method (stats::nls). The code was 
 

192 assessed as fit for purpose by the developers of the two LAMs being assessed (pers. comm. M. Bowes and S. 
 

193 Greene) in independent blind tests on dummy datasets. Standard errors for the load apportionment of hourly data 
 

194 were calculated based on 500 replicates using bootstrapping (Efron 1979). Standard errors for the resampled 
 

195 datasets (as described  in section 2.2)  for  the  four  model  outputs  were  calculated  based  on 2000 resampled 
 

196 datasets. 
 

197 As part of the modelling process, the Akaike Information Criterion (AIC; k = 2; Akaike 1974) was calculated 
 

198 for each dataset output to provide a basis for model selection and, in this case, model comparison. The AIC is 
 

199 used to quantify model fit and takes into account the complexity of a model. AIC was used as the model 
 

200 selection criterion ahead of R2 because of the non-linearity of and power functions employed by the two LAMs 
 

201  

 
202  

(Spiess and Neumeyer 2010). 
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203 Analysis of model outputs 

 
204  

 

205  
 

206  

Full high resolution hydrograph 

 

207 Each modelled line was compared visually to the original observed dataset, with calculated residuals (Equation 
 

208 3) also analysed visually for change over increasing Q. 

 

209  
 

210 Residual = (�̂�𝑡 − 𝑦𝑡) (Eqn. 3) 

211 Where ŷt is the estimated value for TRP load using model coefficients at time t; yt is the observed value for TRP 
 

212 

 

213 

load at time t. 

 

214 The residual as a percentage of observed load was calculated to show the degree of error (see online resource, 
 

215 Table 1SI). In this case, the range of percentage error obtained for increments of Q illustrated the applicability 
 

216  
 

217  

of the modelled line to observed loads across the range of flows, for all sampling strategies. 

 

218  
 

219  

Between models and sampling strategies 

 

220 The mean, standard deviation, skewness and kurtosis for model outputs for each sampling strategy were 
 

221 calculated as part of the evaluation. Accuracy and reproducibility of model outputs between sampling strategies 
 

222 were also analysed using four tests which are outlined below and described in detail in Table 1SI. 
 

223 1. Using Direct Value Comparison (Bennett et al. 2013), the estimated total cumulative TRP load for each 
 

224 fitted model was compared with the observed total cumulative TRP load based on hourly mean data. 
 

225 2. Root mean square error (RMSE) values for three of the 2000 resampled datasets (pertaining to 
 

226 maximum, minimum and median modelled total cumulative TRP load) for each sampling strategy were 
 

227 calculated using Eqn. 4. 

228  

229 𝑅𝑀𝑆𝐸 =  √
∑ (�̂�𝑡− 𝑦𝑡)2𝑛

𝑡=1

𝑛
     (Eqn. 4) 

230 Where ŷt is the estimated value for TRP load using model coefficients at time t; yt is the observed value 

231 for TRP load at time t; and n is the sample number. 

232  
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233 3. The outputs for each of the resampled datasets were then checked for normality using the Anderson- 
 

234 Darling test (Anderson and Darling 1952) using nortest::ad.test in R. Histograms, showing the 
 

235 frequency of outputs for each parameter, were produced along with box plots showing the range of 
 

236 coefficient values for each sampling strategy. To improve the normality of the datasets, 75% of the 
 

237 outputs of each sampling strategy were re-sampled 30 times, and the means of these new datasets 
 

238 provided a new dataset (n=30) which was normally distributed (p < 0.01). 
 

239 4. Using these new normally distributed datasets, the difference between sampling strategies were 
 

240 identified by ANOVA and the Tukey honestly significant difference (TukeyHSD) test, with no 
 

241 limitation on degrees of freedom. The differences between LAMs were determined based on the 
 

242 original outputs from each combination dataset using unpaired t-tests in Prism 5.0, as the degrees of 
 

243  

 
244  

freedom were < 3000, with Welch correction for unequal variances (Welch 1947). 

 

245 Results 

 
246  

 

247 Dataset construction 

 
248  

 

249 Quality controlled mean hourly data (calculated from high frequency sub-hourly data) from the installed 
 

250 instrumentation provided 24867 paired data-points for TRP concentration and Q for three years 1st April 2010 – 
 

251 31st March 2013, out of a possible 26304 data-points (Figure 2). This represented 96%, 93% and 94% 
 

252 completeness for the periods, respectively, 2010 to 2011, 2011 to 2012 and 2012 to 2013. The estimated 
 

253 baseflow index (BFI; ratio of baseflow to total flow) of 0.66, determined by Local Minimum Method (Pettyjohn and 
 

254 Henning, 1979), is considered moderate for this given size of catchment and highlights the previous poor- 
 

255 moderate drainage class described for this catchment (Melland et al. 2012). Table 1 provides the descriptive 
 

256 statistics of the sample numbers for the newly constructed datasets. 

 

257  
 

258 High temporal resolution dataset 

 
259  

 

260 Over the three year period, the total observed cumulative TRP load, based on hourly averages of concentration 
 

261 and flow, was 1380.35 kg or 145.6 kg km-2. This total provided the value for Direct Value Comparison. 
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262 According to the  BM  and based  on  hourly data (Figure 3a), the total cumulative TRP  load  for the three years 
 

263 2010-2013 was 1390.49 kg (RMSE of 0.23 mg s-1). Owing to the availability of high temporal resolution data, 
 

264 the estimation of TRP loads at high flows by the GM was found to be a negative number (due to the third 
 

265 function for hysteresis; Figure 3b). 
 

266 Using these TRP load estimations, the GM calculated total cumulative load as 1380.35 kg with a RMSE of 0.36 
 

267 mg s-1. Despite producing an accurate total cumulative P load, a negative value for P load is not logical, and also 
 

268 affected the calculation of load apportionment at lower sampling frequencies. To mitigate this, any estimation of 
 

269 negative concentration at high flow (above ~99%ile) was converted to concentration by point sources only (i.e. 
 

270 omitting the diffuse and hysteresis functions in the model; Figure 4). In this case, this increased the estimated 
 

271 load to 1438.20 kg (RMSE of 0.22 mg s-1). As the model estimates P load, and point sources are believed to be 
 

272 continuous irrespective of flow, this modification to the model was justified as the point source load must still 
 

273 be accounted for while the diffuse load is absent. Any reference to the GM from this point forward is in relation 
 

274 to this modified model at high flows, unless stated otherwise. 

 

275  
 

276 Sampling scenarios 

 
277  

 

278 Tables 2SI and 3SI (Online Resource) show the outputs for all combinations of new datasets, according to, 
 

279 respectively, the BM and GM models. One estimate of total cumulative TRP load by the BM using C2b 
 

280 (sampling three days per week) was deemed an outlier at 1.66 x 1022 kg and removed. The extremely large range 
 

281 of outputs for total cumulative TRP load estimation by C4 precluded the calculation of a standard deviation. 
 

282 Thirty two C4 datasets had problems with convergence (coefficient C was calculated to equal 0) and could not 
 

283 provide a value for Qe and so were omitted. The coefficients obtained for each model varied widely (Figures 5i 
 

284 and 5ii), with variance in those coefficients that describe diffuse sources (BM: C, D and GM: b, c) increasing 
 

285 substantially as sampling frequency decreased. This could be indicative of the difficulty in accurately defining 
 

286 contributions from diffuse sources with a reduced sampling frequency. 
 

287 High variability in the prediction of the contribution from diffuse sources was also evident due to the increased 
 

288 range of values for all model outputs within each combination dataset as sampling frequency decreased. As the 
 

289 sampling frequency reduced to weekly, implausible values for total cumulative TRP load were produced. This 
 

290 was particularly the case when the monthly datasets were used, with values as high as 9.6 x 10209 kg (BM) and 
 

291 37 391.8 kg (GM) being predicted. High variability may also be attributed to the seasonal nature of the study 
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292 site, where coefficients attempt to describe the TRP-Q relationship over two different halves of the year (as 
 

293 identified by Jordan et al. 2012). 
 

294 All model outputs showed increasing ranges, and bias (skewness values outside -1 to +1, kurtosis ≠ 0) as 
 

295 sampling frequency decreased (Figures 6 and 7, Figures 1SI and 2SI). The outputs achieved by the BM using 
 

296 the monthly sampling frequency (C4) were particularly variable, with 838 out of 999 datasets overestimating the 
 

297 total load by between 1% and 7.0 x 10208 %. Marked differences in output between the two LAMs were evident, 
 

298 particularly in estimates of cumulative load and load apportionment to point sources (Figures 6 and 7). 
 

299 Timing of sampling appears to have had little effect on the estimated percentage of flows dominated by point 
 

300 sources, or P load apportionment for both models. For example, the means for each of the daily sampling model 
 

301 outputs were similar (Qe values of 0.47, 0.46, 0.45 and 0.48 m3 s-1 and 0.044, 0.043, 0.045 and 0.042 m3 s-1 for, 
 

302 respectively, the BM and GM (Tables 2SI and 3SI)). Estimated total loads, however, showed a large divergence 
 

303 between means within a sampling frequency (Tables 2SI and 3SI), particularly for the BM. Thus, although 
 

304 coefficients may have provided a similar answer for Qe and percentage of flows dominated by point sources, 
 

305 they still impacted the precision of total load estimation and the resulting source apportionment. 

 

306  

 

307 Statistical analysis of model outputs 

 
308  

 

309  
 

Between models 

 

310 Differences between estimations of contribution from point and diffuse sources to overall TRP load between the 
 

311 two LAMs were particularly evident. The BM output based on the hourly data indicated that 51.4% (95% CI: 
 

312 48.4% – 54.8%) of the TRP load came from point sources, compared with only 4.2% (95% CI: 4.1% – 4.6%) 
 

313 according to  the GM.  Similar  divergence  in other  model  outputs  was  evident,  with  the percentage of flows 
 

314 dominated by point sources (i.e. number of flows below Qe for each model) ranging from 94.8% (Qe: 0.416  m3
 

 

315 s-1  ) for BM to 37.7% (Qe: 0.049 m3 s-1) for the GM. Significant (p<0.001) differences between models were 
 

316 also  evident  in  the  mean  Qe  values,  percentage  of  time  flows  were  dominated  by  point  sources,  point 
 

317  
 

318  

apportionment, and estimated total cumulative TRP load. 
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319  
 

320  

Between sampling strategies 

 

321 The newly created datasets, from the means of 75% random samples of model outputs within each combination, 
 

322 were found to be normally distributed (p<0.01), except for total cumulative TRP load estimation by the BM 
 

323 using C3 and C4 and Qe using BM for C4 (Table 4SI). Due to the high variation in loads estimated using BM 
 

324 using sampling strategies C3 and C4, and the non-normality of the Qe values using C4, C3 and C4 were 
 

325 excluded from the Tukey HSD test for between sampling strategies (GM values were included). Within each 
 

326 model,  the  means and standard deviations (from the  means of the  newly created resampled datasets)  between 
 

327 sampling strategies were, for the most part, significantly different from each other (p<0.05) for all four model 
 

328 outputs.  The  means of some  combination datasets had  non-significant  differences (Table  5SI). None  of   the 
 

329 datasets had significantly similar means for all four model outputs. 

 

330  
 

331 Residuals analysis 

 
332  

 

333 RMSE scores (Table 2) were, as expected, high for the model parameters resulting in maximum modelled total 
 

334 cumulative TRP loads, while minimum modelled total cumulative TRP loads resulted in the lowest RMSE 
 

335 scores. Residuals stayed quite close to zero until Q reached ~ 1 m3 s-1, when the rate of increase in residual error 
 

336 rose significantly as sampling frequency decreased (Figure 8). 
 

337 Estimations of TRP load at high and low flows were wide-ranging for both BM and GM, reflected by residuals 
 

338 as a percentage of observed load (Figure 9 and Table 6SI; error range 200-4000%). Both residual errors and 
 

339 percentage residual errors at high flows were many magnitudes higher than at low flows (Figure 8 and Table 
 

340 6SI), particularly for the BM. Additionally, loads modelled at lower Q values had large errors when examined as 
 

341 a percentage of observed load. 
 

342 The initial analysis of outputs from the data used indicated that, although the GM provided a more precise range 
 

343 of values for point apportionment and total load estimation, the BM had a consistently better averaged AIC 
 

344  

 
345  

value (i.e., a better fit). 
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346 Discussion 

 
347  

 

348 Applying high temporal resolution data in model assessment 

 
349  

 

350 The availability of high temporal resolution  river  water quality data  has  enabled a comparative assessment  of 
 

351 two relatively widely referred to LAMs, over a range of sampling scenarios. Both LAMs generated very good 
 

352 approximations  of  estimated  total  cumulative  TRP  loads  (1390.49  kg  (BM)  and1438.20  kg  (GM))  when 
 

353 compared with observed values. However, they were statistically very different (p < 0.01) for all model outputs. 
 

354 The differences were largely attributed to the differing model construction (see online resource or Bowes et al. 
 

355 2008 and Greene et al. 2011). When considering model selection, the models were shown to have differing 
 

356 strengths when used ad hoc with extant data. The BM appeared to have the better fit with observed values while 
 

357 the GM, by comparison, generated narrower ranges of model parameters. The most important output, point 
 

358 source contribution, was particularly polarised. This was largely due to the dissimilar algorithms used and the 
 

359 way Qe values are calculated due to the structure of algorithm employed. 
 

360 The river has been observed to have a high concentration of P throughout summer low flows (Jordan et al. 
 

361 2012). Therefore, point sources are expected to dominate (Jarvie et al. 2010) and to contribute a much higher 
 

362 proportion of P than estimated by the GM. Choosing models based on expectation rather than performance  can, 
 

363 however, lead to incorrect conclusions on which model is describing the change in concentration with flow more 
 

364 accurately – mainly because of model abstraction and idealization (Chakravartty 2010). In this case, the change 
 

365 of concentration with flow  based on hourly mean data was known, but future users of LAMs in general may be 
 

366 reliant on lower frequency sampling to determine model parameters. This highlights the need to include an 
 

367 indication of variability, as a measure of confidence, in model outputs. 
 

368 Using a high temporal resolution dataset, the large errors by percentage at both low and high flows were clearly 
 

369 apparent,  with  the error  at low flow observations probably caused  by  the  highly variable  TRP concentration 
 

370 data. This variability was inadequately modelled by a single line  and may be further affected by increased scale 
 

371 and varying base-flow indices (Johnes 2007). Further model development to account for these factors could 
 

372 allow for improved model performance using, as a minimum, daily-resolved data as an input. Similarly, studies 
 

373 of  the  effects  of  quickflow  as  the  predominant  contributor  to  streamflow,  using  high  temporal resolution 
 

374 sampling,  may  provide  additional  hydrological  understanding  required  for  future  improvements  in  model 
 

375 development. However, incorporating the impact of these various factors may lead to a more process-based 
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376 model (as used by Romagnoli et al. 2017), thus rendering somewhat redundant the concept of empirical models 
 

377 as an easy solution to complex hydrological problems, such as load apportionment. 
 

378 Residual errors were found to be particularly high at high flows (Figure 8), and as sampling frequency decreased 
 

379 (Table 2). Previous users of the BM found variable estimation of P concentration at low flows (McDowell et  al. 
 

380 2011; Trevisan et  al.  2012). Future  model  development  could  be  improved  by using suitable  artificial data 
 

381 sequences (Bennett et al. 2013) that may identify the optimum limits of a particular model. This highlights the 
 

382 utility of generating high resolution time series water quality data for, inter alia, model testing. 

 

383  
 

384 Sampling strategy design 

 
385  

 

386 Although  a  higher  sampling  frequency  will  potentially  provide  more  precise  outputs  when  modelling 
 

387 environmental data, balancing resources and uncertainty must be considered when designing a sampling regime 
 

388 (Schoumans et al. 2009). In this study, as the sampling frequency increased, the residual error was reduced and 
 

389 the range of load estimation and other model outputs narrowed. However, using a monthly sampling frequency, 
 

390 nearly all of the resampled datasets overestimated the total cumulative TRP load ~ in some cases by several 
 

391 orders of magnitude. As the LAMs have been designed to represent trends, i.e., changes in P over changes in 
 

392 flow, it follows that monthly data would not be of a high enough resolution to quantify this relationship 
 

393 adequately (Kristensen and Bøgestrand 1996). The WFD implementation has generally resulted in a hierarchical 
 

394 design  for  sampling  frequency  (Petit  2010),  with  EU  member  states  putting  more  resources  into   failing 
 

395 catchments  to  identify  the  driving  factors  of  eutrophication  (Priestly  2015).  Consequently,  in  most  other 
 

396 catchments where sampling frequency remains low (usually monthly due to sampling budget constraints) LAMs 
 

397 there are unlikely to prove effective as management tools. 
 

398 While some studies  have looked  at the  effects on  model outputs of reducing sampling frequency  (Jarvie et al. 
 

399 2010; Cassidy and Jordan 2011; Wade et al. 2012; Bieroza et al. 2014), few have investigated specific timing, 
 

400 either  during the  day or  during the  week.  Dissolved  oxygen saturation over  a  24  hour  period  has shown a 
 

401 distinct diurnal cycle (Wade et al. 2012). Yet sampling regimes may be implemented to collect a river sample 
 

402 within a 3 hour window of a particular day of the week, and few are collected outside of normal working hours. 
 

403 Model outputs in this study were statistically significantly different, depending on what day of the week a water 
 

404 sample was collected (estimates of point apportionment could differ by 30% depending on the days of the week 
 

405 sampling  took  place).  Similarly,  daily  night-time  and  daytime  modelled  total  cumulative  TRP  loads were 
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406 statistically different (p<0.001). Hence sampling that takes place at regular intervals with a relatively low 
 

407 frequency may be missing processes and sources of P occurring at specific times of day and/or on specific days. 
 

408 Some studies suggest that weekly sampling combined with storm sampling will provide the best range of 
 

409 concentration with flow data for use in modelling. However, even using this method, McDowell et al. (2011) 
 

410 could only achieve a dataset that covered 60% of their site’s flow duration curve after 6 years of sampling. 

 

411  
 

412 Implications for catchment management strategies using load models 

 
413  

 

414 This study and others (Cassidy and Jordan 2011; Chen et al. 2013) have illustrated the challenges associated 
 

415 with the accurate prediction of P loads at high flows. Johnes (2007) found total P annual load was progressively 
 

416 overestimated by each model tested as sampling decreased from daily to monthly. However, Wade et al. (2012), 
 

417 on the much larger River Thames, UK, saw little improvement in annual total P load estimation using a simple 
 

418 nutrient load estimation algorithm when the frequency of sampling was reduced. In the current study, sampling 
 

419 three times per week resulted in only slightly higher RMSE and a small reduction in uncertainty in cumulative 
 

420 load estimation (Table 2). 
 

421 This poses a number of problems when considering effective management strategies to improve river water 
 

422 quality. For example, improvements in sewage treatment are likely to be viewed as the optimal management 
 

423 response  to  model  outputs  identifying  point  sources  as  the  predominant  contributor  of  P  load  in  a river. 
 

424 However, high uncertainties associated with the model outputs may render improvements in sewage treatment 
 

425 futile. Similarly, model outputs suggestive of a strong diffuse source contribution of P load could lead to 
 

426 inappropriate and ultimately ineffective measures applied to farming practices in the area. Point sources can be 
 

427 particularly important  during  the  late spring  and  early  summer, i.e. during  much of  the  ecologically critical 
 

428 growing season (Jarvie et al. 2013; Jarvie et al. 2014). Consequently the ability to model TRP load at  low flows 
 

429 adequately, thereby reducing the risk of incorrectly attributing P loads to either point or diffuse sources, is of 
 

430 vital importance to the effective management of river eutrophication. This is especially so in mixed landuse, 
 

431 mixed P source catchments where those sources have different hydrological dependencies (Jordan et al. 2007). 
 

432 The success of river restoration measures is dependent on the implementation of adequate post restoration 
 

433 monitoring (Feld et al. 2011). Here the length of monitoring is important but, as shown in this study, also 
 

434 sampling  frequency.  As  another  possible  application  of  LAMs  could  be  to  identify  a  change  in  P  load 
 

435 apportionment,  and/or  reduction  in  annual  cumulative   P   load,   following  implementation  of  remediation 
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436 measures (e.g., Greene et al. 2011), this would also be constrained by the uncertainty observed in these model 
 

437 outputs when tested using high resolution data. 
 

438 The  decrease  from  a  possible  365  to  150  observations  per  year  to  only  50  (i.e.  weekly)   was  shown to 
 

439 significantly reduce the precision of each of the models for all four model outputs. However, daily sampling 
 

440 appeared  to  provide  some  parsimony  and  a  trade-off  between  sample  temporal  resolution  and  model 
 

441 requirements (for total cumulative load estimation). Even with a daily sampling scenario, the provision of 
 

442 observed cumulative TRP load from high temporal resolution data highlighted the potential for  poor  prediction 
 

443 of TRP load (290% load overestimation for C1a). 
 

444 While this study focuses only on two models that were devised for physiographically different catchments, the 
 

445 overall  finding relating to  the  effects of sampling  frequency and  timing on  model  outputs  has  much  wider 
 

446 implications. This is particularly the case given that both models have been relatively widely applied. Use of the 
 

447 BM and GM in the current study revealed divergent outputs based on varying input data from the same 
 

448 catchment. At extreme ends, one model suggested the contribution from point sources was low (magnitude- 
 

449 centric) while the other estimated nearly all flows in the year to be dominated by point sources (duration- 
 

450 centric). Source apportionment, even using samples collected at a daily interval, resulted in high prediction 
 

451 variability (particularly for the BM) and presented a problem for modelling in rivers that historically have been 
 

452 sampled  on a  monthly basis.  Nevertheless, the estimated  rural-point source TRP  load of 63  kg  year-1  using the 
 

453 method by Carvalho et al. (2005) - approximately 14% of total observed cumulative load) is similar to that 
 

454 approximated by the GM. However, there is an equal element of uncertainty with this source estimation due to 
 

455 unresolved point source origins, condition and risk (Melland et al. 2012; Murphy et al. 2015). 
 

456 Withers et al. (2009) highlighted the oversimplification of nutrient modelling using LAMs, evident in the use of 
 

457 a single modelled line to describe the clustering of points at low flows. Similarly Neal et al. (2010) discussed the 
 

458 requirement of a larger number of variables (which may vary spatially as well) to model P transport in rivers 
 

459 fully. The complexity of P-Q relationships has also been recognized in high-resolution datasets by Bowes et al. 
 

460 (2015). Lower resolution data were found to mask important P processes leading to a need for more complex 
 

461 model assumptions and may require a completely new analytical method (Chaudhary and Hantush, 2017). It is 
 

462 clear that the use of LAMs needs to be developed on catchment specific data but development, and therefore 
 

463  
 

464  

 
465  

model predictions as shown here, may be constrained by the quality and resolution of the input data. 



17  

466 Conclusions 

 
467  

 

468 One  of the  benefits of using  higher  resolution environmental  data  is the  ability to  assess the  limitations   of 
 

469 existing empirical models that are often employed for river catchment management. Sampling frequency has 
 

470 been identified as an important factor in model performance previously and this study developed a method to 
 

471 quantify this effect on two commonly-used LAMs. This was particularly pertinent as point sources have become 
 

472 recognised as influential in eutrophic episodes because of their dominance during the ecologically critical period 
 

473 of spring/summer. 
 

474 Three clear outcomes from this study were: 
 

475 1. Interrogation of high frequency data allowed the assessment of the precision of models over a range of 
 

476 sampling frequencies and timings 
 

477 2. Accuracy of model outputs may be improved by partitioning the data collected seasonally 
 

478 3. The main difference between the two LAMs was in the apportionment of TRP to point sources. This 
 

479 has important implications for their use in catchment management. 
 

480 Regarding outcome 1, variation in modelled total cumulative TRP load across sampling scenarios showed that 
 

481 daily sampling appeared to show some compromise between resource and model requirements at the scale of the 
 

482 study – this requires further investigation. Errors were particularly evident at extremes of the flow curve and 
 

483 therefore could be reduced by targeted sampling campaigns. Although, timing of sampling also affected the 
 

484 accuracy of  model  outputs.  The  results  presented  here  highlight  the  need  for  robust  statistical testing and 
 

485 provision of confidence intervals for output data. This will ensure selection of the most appropriate model and 
 

486 that confidence can be attached to the implementation of measures aimed at improving river water quality. 
 

487 Outcome  2  highlights  the  seasonal  nature  of  the  data  used  and  that  processes  are  different  due  to  land 
 

488 management practices and weather patterns in temperate climates. Future models should use data that have been 
 

489 seasonally partitioned to determine if accuracy may be improved. 
 

490 Outcome 3 revealed the disparity often displayed using different models on identical datasets. In this study, 
 

491 output from one model suggested that improvement in water quality would be best achieved through measures 
 

492 that target diffuse sources in the catchment (magnitude-centric) whereas the other model pointed firmly towards 
 

493 point  sources  being  an  important  factor  in  poor  water  quality  (duration-centric).  Thus  as  tools  for  river 
 

494 management,  empirical  models,  such  as  LAMs,  need  to  be  considered  within  focused  and  expert  based 
 

495 modelling frameworks.  Moreover,  the  LAM  used  is  likely  to  require  calibrating  to  accommodate  local 
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496 catchment characteristics. Ignoring these factors is likely to lead to widely varying results and challengeable 
 

497 decisions as shown by the application of high temporal resolution data in this study. 

 

498  
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Fig. 5 Box plots showing the range of values obtained for i) A, B, C, and D coefficients  using 

the BM and ii) a, b, and c coefficients using the GM. Grey dashed line denotes the coefficient 

value of the best fit line using hourly data (Grapher 9.0). 



 

 
 



 

 
 



 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8 Residuals between modelled line for each sampling strategy (using datasets with max 

total reactive phosphorus (TRP) modelled load) and observed TRP load, a) BM versus GM 

using hourly dataset, b) BM only and c) GM only. Values next to arrows show maximum 

residual obtained for sampling combination (Grapher 9.0). 
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Fig. 9 Range of residuals as a percentage of observed total reactive phosphorus loads as Q increases. Error bars indicate the largest range between min and 

max values of % residual error for the particular model and sampling strategy (Grapher 9.0). 
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Table 1 Description and summary statistics of resampled datasets for each sampling combination 
 
 

  No. of Datapoints per Dataset 
No. of      

C Sampling Scenario Datasets Mean SD Median Min Max 

C1a 
Daily – Random in 24 

2000
 

1069 0.00 1069 1069 1069 

C1b 
Daily (same hour each 

24
 

 

1036 
 

4.45 
 

1036 
 

1029 
 

1044 

C1c 
Daily (Night) - Random 

2000
 

1068 0.00 1068 1068 1068 

C1d 
Daily (Day) – Random 

2000
 

769 0.00 769 769 769 
Mon - Fri, 08.00-18.00 

Three days per week - 

 

C2a random 2000 
(Mon-Fri 08.00-18.00) 

461 1.44 462 459 463 

Three days per week - 
C2b Mon Tue Thu 08.00- 2000 

18.00 

 

462 
 

0.00 
 

462 
 

462 
 

462 

Three days per week - 
C2c Mon Wed Fri 08.00- 2000 

18.00 

 

460 
 

0.00 
 

460 
 

460 
 

460 

C3 
Weekly – Random, 

2000
 

157 0.00 157 157 157 

C4 
Monthly – Random,

 999
 

36 0.00 36 36 36 



 

 
 
 

Table 2 Root mean square error (RMSE) for each combination dataset, using coefficients from 

individual datasets modelling the highest, lowest and median total cumulative total reactive 

phosphorus (TRP) load by the BM, when compared with observed load using high frequency Q data. 

 

 

 

 

 

Strategy 
 
 
 
 
 
 

C1b 
Specific time each 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

18.00) 

    

 
RMSE (mg s-1) 

  

Sampling 
Meta Data Model Highest Lowest Median 

 Estimated Estimated Estimated 
 TRP Load TRP Load TRP Load 
    

BM 5.90 0.12 0.33 
C1a Daily – Random 

GM 0.31 0.14 0.14 

BM 0.47 0.12 0.30 

day GM 0.30 0.14 0.13 

Daily – Random BM 
C1c 

(18.00-05.00) GM 

11.16 

0.36 

0.12 

0.20 

0.14 

0.17 

Daily – Random BM 2.71 0.17 0.42 

C1d (Mon-Fri; 08.00- 

18.00) 
GM

 
0.18 0.16 0.14 

Three days per BM 39.76 0.14 0.62 

C2a 
week - Random 

(Mon-Fri; 08.00- GM 
18.00) 

 
0.19 

 
0.18 

 
0.14 

Three days per BM 62.55 0.21 1.91 
week 

C2b 
(Mon, Tue, Thu; GM 
08.00-18.00) 

 
0.19 

 
0.18 

 
0.16 

Three days per BM 2.22 0.15 0.38 
week 

C2c 
(Mon, Wed, Fri; GM 
08.00-18.00) 

 
0.19 

 
0.15 

 
0.15 

Weekly – Random BM 3.04E+70 0.14 0.96 

C3 (Mon-Fri; 08.00- 

18.00) 
GM

 
7.37 0.19 0.16 

Monthly – BM 1.36E+144 0.16 0.31 
Random 

C4 
(Mon-Fri; 08.00- GM 

 
72.97 

 
0.19 

 
0.17 
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